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The detailed dynamics of an unstable free shear layer are examined for a gravi- 
tationally stable or neutral fluid. This first article focuses on the part of the evolu- 
tion that precedes the first subharmonic interaction. This consists of the trans- 
formation of selectively amplified sinusoidal waves into periodically spaced 
regions of vorticity concentration (the cores) joined by thin layers (the braids), 
in which vorticity is also concentrated. The thin layers are the channels along 
which vorticity is advected into the cores, and the cores provide the strain which 
creates the braids. For moderately long waves an analysis is given of the braid 
structure as a function of time. For gravitationally stable shear layers at high 
Reynolds numbers, the local vorticityreaches suchlargevalues as to cause second- 
ary shear instability on a small (length) and short (time) scale. A physical 
account of the primary instability and its self-limiting mechanism is used as a 
basis for a computation, which yields growth rates and maximum amplitude as 
a function of initial layer parameters. The computation supplies the wavelength 
of waves that grow to achieve the largest (absolute) amplitude. Finally, the 
model makes it clear that, in the absence of secondary instability, this initial 
phase of the nonlinear development of the layer contributes only a modicum of 
additional mixing, especially a t  high Reynolds numbers. 

1. Introduction 
In  the problem treated numerically in Patnaik, Sherman & Corcos (1976), 

the vorticity is originally uniform in x, and distributed within a finite thickness, 
with a maximum a t  the centre of the layer. In  addition, the region of density 
change is somewhat thicker than the region of velocity variation, so that the 
fluid is least stable a t  the centre of the layer. The computations reveal that, as the 
wave grows, the following transformation takes place. A narrow region of closed 
streamlines, the ‘ cat’s eye’, introduced with the initial disturbance, widens. 
With time, an increasing fraction of the total vorticity is found within the expand- 
ingrecirculatingregion. Thisin turn causes an induced strain field to be established 
along the dividing streamlines between the cats’ eyes, and, particularly, near the 
stagnationpoints. (See figure 1 .) There is a positive strain along one of the dividing 
streamlines, negative strain along the other. The strain field tends to centre the 
vorticity and density distributions along a direction with positive strain, and to 
thin those layers (and consequently intensify density and vorticity gradient 
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FIUURE 1. Vorticity concentration. - , streamlines. Vorticity is concentrated 
within the shaded area. Note the strain field in the centre of the picture. 

across them). If the dividing streamline were stationary, the layers thus formed 
would be aligned with it; but it rotates as the wave grows and the layer rotation 
near the stagnation point (where this effect is strongest) lags somewhat behind 
that of the streamline, particularly during the early stages of the growth. Both 
vorticity and density distributions are thus extruded on both sides of the stagna- 
tion point, more or less along the stagnation streamline, towards and apparently 
through the expanding edge of the cat's eye. The tilted and narrow layer of den- 
sity gradient (the braid) is strongly baroclinic, and so also a source of vorticity. 

It is, of course, of interest to supply an analytic and physical framework for 
the description of such a process, one that should be suitable to the high Rey- 
nolds numbers typical of oceanic and atmospheric shear layers, for which finite 
grid computations are ill-suited. We shall see that the process described above 
is the means by which vorticity is redistributed, and that the various stages of the 
instability of the layer correspond to the modes of horizontal migration of the 
vorticity from an initial distribution uniform in x. 

In  what follows, we shall examine first, by simple analytical methods applic- 
able to high Reynolds numbers, the evolution of the flow near the stagnation 
points. In  particular, we shall give estimates of the thickness of both the density 
and the vorticity layers as a function of time, and consider the possibility of 
occurrence (in the baroclinic or initially gravitationally stable case) of small-scale 
or secondary instability in the braids. The analysis applies only after an initial 
period of growth, and for sufficiently small non-dimensional wavenumbers. 

We shall also synthesize the basic features of the nonlinear instability in a 
model designed to explain why finite waves or billows reach a maximum ampli- 
tude, how fast the wave is constrained to grow, and what role a stable or unstable 
vertical density difference plays in the growth. Our physical account of the in- 
stability prepares us to suspect that waves of only slightly different wavelengths 
cannot grow simultaneously to large amplitude, and to view the phenomenon 
of vortex pairing, or the dominance of subharmonics, as a qualitatively similar 
repetition of the initial nonlinear instability, a sort of binomial hierarchy of 
instabilities which goes on without end in a barotropic shear layer, but which 
is limited by buoyancy in gravitationally stable cases. 

Finally, our model will lead to an estimate of the maximum thickness of a 
mixing layer which evolves from an initial thermocline or inversion with a given 
density difference and shear. 
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Both subharmonic generation (i.e. the stepwise increase in the scale of the 
instability), and the terminal state of a gravitationally stable layer will be dis- 
cussed in a subsequent paper. 

2. The structure of inner diffusive and viscous layers in the neighbour- 
hood of stagnation points 

In  order to study the structure of the vorticity and density layers near stagna- 
tion points, two assumptions will be made. They are suggested by the numerical 
results of Patnaik et al. (1976), and defended below. The first assumption is that 
the vorticity and temperature layers are thin, and that the strain along them is 
analytic around the stagnation point. The second is that, even though the 
vorticity found in the braid near the stagnation point induces a substantial 
local velocity, that part of the velocity plays no role in the advection of either 
temperature or vorticity. In  other words, the local vorticity can be treated as a 
passive scalar. 

The co-ordinates chosen are locally orthogonal, and centred in the middle of 
the braid (figure 6). Braid radii of curvature are assumed large next to layer 
thickness. The origin is the stagnation point. s is the streamwise co-ordinate in 
the direction along which the vorticity and density gradients are assumed con- 
centrated;f y, a co-ordinate normal to s. The velocity u has components u 
(along s) and D (along y). 

We wish to distinguish between the velocity u,, induced by thevorticitybroadly 
distributed within the cat’s eyes and the ends of the braids, and the velocity u,, 
induced by the vorticity in the thin, inclined braids. Each is assumed to satisfy 
continuity separately. 

The velocity u, has, after the braids are formed, characteristic magnitude U 
(where U is half the initial shear) and characteristic scale A. Such a scaling follows 
from the Biot-Savart Law. The component v, along y vanishes on y = 0, and 
elsewhere has order of magnitude (rU/A).  Call 6 the characteristic braid thick- 
ness. The velocity induced locally by the concentrated vorticity layer may have 
order of magnitude U also. If the braids are thin and nearly straight, and if the 
braid vorticity is nearly uniform with s, component v, will be negligible. 

Thus, if R is the braid radius of curvature, provided 8/R < 1 and asllas Q Q/A, 
the dominant components of the velocity in the braid around the stagnation 
points are 

(a is the vorticity.) Furthermore, if satisfactory local solutions are found for the 
vorticity such that asl/as = 0, then for any scalar A ,  independent of s, u.VA 
reduces to v,aA/ay. We shall assume first, and verify a posteriori, that these 
conditions are satisfied. 

t I n  what follows, we overlook the rotation of the co-ordinate system, which adds a 
small amount of relative vorticity to  the braid. It is easy to show that the error due to this 
omission is negligible for high Reynolds numbers. 

16-2 
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Now, it is found in Patnaik et al. (see our figure 7) that, along the braids and 
to good accuracy over a length typically $A, u&s, 0) = y( t )  s, where y is indepen- 
dent of s.t Hence, to order &/A, 

uc(s, 7) N ys and u . VA = - y7 aA/ay. 

It is possible that solutions derived from the foregoing assumptions become 
accurate only a certain time after the onset of instability. Moreover, it  will be 
clear from the solutions that they require a minimum Reynolds number to be 
justified. Such restrictions are similar to those which attend the application of 
boundary-layer theory to boundaries which have a sharp leading edge, and for 
which boundary-layer approximations are valid only beyond a minimum dis- 
tance downstream of the leading edge. 

2.1. Similarity solution for the density 
In  the s, q co-ordinate system, and with the ‘ boundary-layer ’ approximations 
just discussed, Patnaik et al. (1976, (2.3)) is reduced to 

The boundary conditions corresponding to the problem of Patnaik et al. (1976) 
are then 

p -+ poT $Ape for q/8 + -+_ co. 

We test a similarity solution 

where we take 
(P -Po)/(APo) = G(E), (2.2) 

which implies that G’(0) = - 4. Substitution of (2.2) into (2.1) leads to 

PG” + (88’ + 78’) EG’ = 0. (2.3) 

This is an ordinary differential equation 

G+K[G’ = 0 

for G ,  provided that cY2 obeys the ordinary differential equation 

(8’)’ + 278’ - 2Kp = 0 (2.5) 
t This feature of the numerical solution may appear inconsistent with the fact that the 

two stagnation streamlines evidently do not intersect at right angles. (See e.g. Patnaik 
et al. 1976,figure 4.) In  fact, in his stationary solutions for a stratified shear layer,Maslowe 
(1972) found cusps at the stagnation point. But, whatever the local peculiarities of the 
stagnation streamline geometry, they are simply the kinematic result of the presence of 
local vorticity. The assumed local vorticity distribution, essentially a vortex sheet along 
a direction approaching that of one of the streamlines, cannot modify the local advective 
properties of the velocity field, an irrotational strain due to a remote vorticity distribu- 
tion. Conversely, the evidence in Patnaik et al. for simple strain in this region is abundant. 
It includes the fact that the temperature braid is always straight (as is the stagnation 
streamline bearing the vorticity) and always has uniform thickness over a length the 
thickness. 
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for any constant K .  The solution of (2.4) which meets the condition 

G + T i  as [+-?co 
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is G = -ierf(*K*lJ; (2.6) 

and the value of K implied by our definition of 6 (as the half-thickness of the 
density profile) is in. Thus, our approximation to the density profile of the braid 
is the error function 

6 is given by 
p = po - $Ap, erf (ids). (2.7) 

S2( t )  = S2(t0)exp [ - j t :2y( t ' )dt ' ]  +npJt:exp [ -It: 2y(t")dt"] dt'. (2.8) 

We saw in Patnaik et al. that y is nearly independent of time during the last 
half of the period of vigorous wave growth. If y remains constant for a sufficiently 
long time, the second term of (2.8) becomes dominant, and the braid thickness 
approaches the asymptotic value 

400) = ( n m Y ( 4 ) t .  (2.9) 

(Remember that pis the diffusivity for density, either thermal diffusivity or, say, 
salt diffusivity .) 

When the Reynolds number is high (say, US/. 2 loo),  and the initial dimen- 
sionless layer thickness is not too small (say, a E 2n8/h 2 0-1), the braid 
thickness will approach its asymptotic value from above. In  many of the sample 
calculations made, the time to attain the asymptotic thickness was very close to 
the roll-up time of the wave. 

2.2. Ximilarity solution for the vorticity 

The vorticity equation derived from the Boussinesq momentum equations (2 .  l ) ,  
(2.2) is 

We can write this in the s, 7 co-ordinate system, with the same boundary-layer 
approximations used to mi te  (2 .1) ,  and by disregarding the rotation of the new 
co-ordinate system. The result is 

aQ aQ a 2 s z  gsin6 ap -_  y - = - - -  

at Y7&- ar2 P 87' 

Substituting our result for the density profile, we obtain 

where g* 3 ( Ap,/p,) g. 
If we tent a solution in the similarity form 

(2.10) 

(2.11) 

(2.12) 
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where f;, = qlSu, we are led first to 
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A homogeneous solution, satisfying the boundary conditions !2, -+ 0 as 7 -+ 

and the integral condition 
co 

is given by H ,  = 4 exp ( - $7r[u2), (2.13) 

provided that (63’+2yS;-7Tv = 0, (2.14) 

and that S&+ ys, = 0. (2.15) 

The baroclinic contribution to braid vorticity takes a simple analytic form 
only if the coefficients of diffusion for density and vorticity are equal. In  this 
special case ( v  = p), we find that 6 and 8, obey the same differential equation. 
If we assume them equal initially, they remain equal. In  this special case the 
general solution of (2.11) takes the similarity form (2.12), with 

H = Qexp ( - & 7 ~ [ ~ ) ,  (2.16) 

provided that (62)’+2y62--nv = 0, (2.17) 

and that S’+yS-g*sinO = 0. (2.18) 

The baroclinic contribution to the problem appears in the last term of the equa- 
tion for S. Whereas S tends to zero with large time in homogeneous flow (since 
S > 0 ) ,  there is a finite limit 

S(o0) = g* sinO,/y, (2.19) 
in baroclinic flows. 

2.3. T h e  evolution of the vorticity in the braid 

According to the similarity solution, the initial vorticity of the braid is steadily 
depleted by the differential convection due to the strain along the braid. How- 
ever, additional vorticity is generated baroclinically as a result of the tilting of 
the braid. The total vorticity per unit length of the braid generated in this way is 
independent of braid thickness, but the maximum value of the vorticity (found 
at the centre-line 7 = 0 )  is inversely proportional to the braid thickness, and 
therefore increases with the Reynolds number. As the braid becomes thin, the 
maximum vorticity becomes large; and it is of interest to investigate the likeli- 
hood that a secondary shear instability on a small scale (and of rapid growth) 
takes place. 

We do not know exactly how the stability of an inclined shear layer is related 
to that of a horizontal one; but we guess that it may depend upon the component 
of gravity normal to the layer, and upon density and velocity derivatives in that 
same direction. For our similarity solutions, the minimum Richardson number 
of the braid occurs where 7 = 0, and can be evaluated from (2.2) and (2.12). First 
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Assuming that 8, = 8, and substituting 

a(0) = -8, H(0 )  = 8, 
we get J B  = 2g*s/s2 COB e. 
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(2.20) 

For a compact though anticipatory estimate, we can assume that y(t)  and 
8(t) have reached asymptotically constant values, and indeed that s(t) and s(t) 
have reached the limits given by (2.9) and (2.19). Then J B  approaches the limit 

JB(oo) = (2nv)* (sin Om tan &)-l &g*. (2.21) 

As is clear from either Patnaik et al. or from arguments presented below, JB is thus 
of order PrlRea, where Fr = U2/Ag*. 

Computations were carried out to ascertain whether in fact secondary shear 
instability is possible before the wave reaches maximum amplitude. The simi- 
larity solutions were used, together with strain rates y and braid slope angles 8 
given as functions of time by the dynamical model discussed below, rather than 
by the numerical computations of Patnaik et al. Two values of the Reynolds 
number were used for the braid calculations, UA/v = 5 x lo3 and 5 x lo5. The 
quantities computed were the braid Richardson number J B  towards the end of the 
primary-wave growth, the preferred wavelength A, for the secondary-wave 
instability in terms of the primary-wave length A, and the time ratio r* of second- 
ary-wave roll-up time 2A,lS to primary-wave roll-up time AlU. 

Since these quantities evolve over time, the secondary instability develops on 
a layer for which neither the total shear nor the thickness is stationary. The 
typical values of JB, A, and r* to which we refer are not final, but those reached 
before the primary wave is of maximum amplitude, an interval of time sufficient 
for the secondary wave to develop fully. J B ,  A, and 7* decrease monotonically 
with time as the primary wave grows, so that values chosen in this way may tend 
to under-estimate somewhat the degree of secondary instability. 

The results of the computations show that for the lower Reynolds number, 
secondary instability is barely possible and probably rather rare. The value of 
JBnever falls below 0.13, forwhich, according to Patnaik et al., thewaveamplitude 
is small ; and the roll-up time T* = 2h2 UlAS is never smaller than 0.4 and often 
approaches unity, implying that the weak instability, when it occurs, proceeds 
rather slowly. On the other hand, for the higher Reynolds number, secondary 
instability should be prevalent over a rather wide range of values of primary- 
wave parameters J, and a. Figure 2 shows contours of constant non-dimensional 
secondary roll-up time 7* in the a, J, plane. The way these contours close for 
a > 0.4 was only coarsely estimated, because the dynamical model that provides 
y and 8 in these computations is not applicable to short waves. (See $4.2.) For 
the contours shown, J B  < 0.04 and hB < 0.025A. Hence short waves must 
appear along the braids, and roll up into small billows, before the primary wave 
has reached maximum amplitude. This phenomenon, the flow of energy from 
one length scale directly to a much smaller length scale, is a striking consequence 
of baroclinicity a t  high Reynolds numbers in a purely two-dimensional flow. 

In  the oceans, according to Thorpe (1973), billows are found as a result of the 
shear instability of layers for which, typically, Re,, 2: 2.4 x lo4. In  the atmosphere, 
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FIGURE 2 .  Criteria for secondary instability of the braids. 7* = 2A,U/hS, the ratio of 
roll-up time for secondary to that for primary instability. 7 * :  (i) 0.1, (ii) 0.05, (iii) 0.04. 
Everywhere within the inner contour 7* > 0.03. Everywhere within the outer contour 
A, N 0.02A and J O B  < 0.04. For all cases, UA/v = 500000. 

the same phenomenon occurs a t  values of Re, several orders of magnitude larger. 
Hence, we conclude that, in the atmosphere, secondary instability must be 
prevalent, and that in the oceans it is probably frequent also, though not for the 
smaller shear layers. 

2.4. Validity of the braid solutions 
The similarity solutions are consistent with the assumptions that led to the 
linearization of the convective terms. On the other hand, (2.18) states that the 
rate of decrease of the vorticity per unit length of the braid is the difference 
between a negative term (the rate at which vorticity is convected out of a section 
of the braid by the strain) and a positive (the local baroclinic rate of vorticity 
generation). The boundary condition used on the vorticity equation (namely, 
SZ -+ 0 as T,I -+ 4 00) does not allow for the possibility that the streamlines that 
enter the braid from both sides might carry vorticity from regions outside this 
thin layer. That such recirculation of vorticity does not occur is not self-evident. 
In  fact, it  seems reasonable to believe the following a priori. (i) During the initial 
growth of the braids, all streamlines feeding them will carry vorticity. (ii) If the 
initial layer thickness is relatively large compared with the wavelength (a  large), 
or if the Reynolds number is sufficiently low, streamlines entering the braid 
region will always involve rotational fluid. Suppose we exclude the initial period, 
low Reynolds number cases and short wavelengths. (That is, suppose we consider 
the finite amplitude development of waves reasonably similar to interfacial 
Kelvin-Helmholtz waves.) Even then it is possible to suspect that vorticity is 
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FIG- 3. Vorticity and streamlines. Vorticity does not recirculate into the braids when 
a < 0.2. a = 0.2, J ,  = 0-03, U6/v = 25, Re, = 785 (Re8 = 25). T: (a) 0-6, (b )  0.78, 
(c) 1.0 (maximum amplitude). 

recirculated into the braids, simply because it must diffuse a t  leisure throughout 
the closed streamlines of the flow, and half the braid streamlines are closed. 

It is clear that, if vorticity is prevented from recirculating into the braids, it 
must be because the area enclosed by the stagnation streamlines (the area of 
recirculating flow) grows too rapidly for vorticity either to spread throughout 
this area, or to be advected along the full length of the dividing streamline towards 
the next stagnation point without entering the recirculating region. Accordingly, 
one would expect that, at about the time the wave stops growing, our braid 
solutions would begin to fail. 

Inasmuch as the postulate that the vorticity originally advected along the 
braids penetrates the closed-streamline region and is trapped there is an essential 
component not only of the similarity solutions above, but also of the dynamic 
model which follows, it is worth inquiring further into its basis in fact. This can 
be done directly by plotting the streamlines and constant vorticity lines obtained 
from Patnaik et al. for a number of cases at various stages of the wave growth. 
This is done in Patnaik et al. (1976, figure 13); two more such plots are given in 
figures 3 and 4. They illustrate the inference that when a = 0.2, after a relatively 
short time, and even for USIv initially equal to 25, the streamlines entering the 
braid from either side involve only irrotational fluid, until a time exceeding that 
for maximum amplitude. On the other hand, when a = 0.43, the streamlines 
entering the braid carry some vorticity at all times. 

Evidence of the validity of the similarity solutions for a < 0.2 is presented in 
figure 5. The figure compares the vorticity profiles s2 (7, t )  given by the similarity 
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FIUURE 4. Vorticity and streamlines. Some vorticity recirculates at all times when 
cc b 0.43. cc = 0.43, J ,  = 0.07, US/v = 50, Re,, = 730. 7 :  (a) 0.5, (b )  1.25, (c) 1.50 (maxi- 
mum amplitude). - , $ contours; . - - - -, R contours. 

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 

q p  ( x  10-8) q/n ( x 10-3) 

FIUURE 5. Comparison of the similarity solutions with the numerical solution of Patnaik 
et al. Vorticity structure of a braid near the stagnation point: a: = 0.2, J ,  = 0.03, 
US/v = 25. T :  (a) 1.0, ( b )  1.25. 0. $/A = 0; 17, s/h = 4. 
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solutionwith thosegiven by thenumerical solutions of Patnaik et al. in the vicinity 
of the stagnation point for a sample case. The case chosen is one in which the 
numerical ‘diffraction fringes’ discussed in Patnaik et al. are absent, by virtue 
of a sufficiently low Reynolds number. 

3. The dynamics of growth to maximum amplitude for a given wave 
The experimental evidence of Sat0 (1956), Freymuth (1966) and Browand 

(1966), the analysis of Kelly (1967) and the numerical solutions presented in 
Patnaik et al. all indicate both that an instability which originates a t  a given 
wavelength is capable of interacting with subharmonics, and that the growth 
of the subharmonics (waves that may be unstable in their own right) can be 
considerably enhanced by the presence of a primary wave of finite amplitude. 
This subject is of course of great importance. The growth of subharmonice 
enlarges the physical scale of the instability, and it is in general a fundamental 
part of the evolution of an unstable shear layer. For the present, we wish to 
restrict our account of nonlinear instability by ignoring these further (and in 
general later) steps in the systematic migration of vorticity into more distant 
and stronger centres. We offer the following word picture of the Kelvin-Helm- 
holtz instability, and of the formation of billows which result. 

During the early stages of growth of an infinitesimal periodic disturbance, it is 
easy to show that vorticity accumulates in regions which are periodically spaced. 
(See e.g. Batchelor 1967, p. 515.) This vorticity originates in other regions of the 
layer, which are consequently depleted. The accumulation of vorticity (in what 
will become the cores) causes a strain field, which is most intense half-way be- 
tween the locations of the cores (the stagnation point regions). The strain is 
essentially proportional to the circulation around the region of vortex accumula- 
tion. This strain field causes the braids to be formed, thinned, stretched and 
inclined more or less along the direction of ma,ximum strain. The ends of the 
stretched out braid wind up in the cores, and vorticity is thereby transferred 
from the braid into the cores. The increasing core vorticity induces a greater 
strain, a faster stretching rate (as well as a larger braid slope), and therefore an 
even more efficient vehicle for vorticity accumulation into the cores. Two further 
facts are required to describe the motion. 

The total circulation around a loop, which encloses one wavelength of the 
growing perturbation, has the fixed value I? = - 2Uh, no matter what the stage 
of development of the billow or its degree of baroclinicity. This follows from the 
periodicity of the flow in the x direction and the limited range of y within which 
vorticity is found a t  any finite time. 

Vorticity is generated baroclinically both in the braids and in the cores. The 
more the braids are tilted, the greater the baroclinic generation there. One may 
view the baroclinic generation or destruction in the cores as automatic compensa- 
tion for that in the braids, since the total vorticity per wavelength remains con- 
stant. 

At first, the braids lose more vorticity by advection into the cores than they 
gain by baroclinicity. Thus the core circulation increases. But the instability 
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is self-limiting when the rate at which vorticity can be drawn from the braids into 
the cores equals that at which fresh vorticity is generated within the braids. 

In  the uniform-density or barotropic case, the terminal state is one in which 
the vorticity of the braids is totally depleted.? In  the baroclinic case, advective 
losses being eventually balanced by baroclinic generation, a fraction of the total 
vorticity remains in the braid. If the initial layer is gravitationally unstable, 
vorticity of sign opposite to that of the initial vorticity is produced baroclinically 
in the braids; the core vorticity increases without bound and exceeds 2Uh as 
soon as the braid vorticity changes sign. For this case, the instability is not self- 
limiting. 

In  general, the greater the fraction of the total circulation contributed by the 
vorticity within the stagnation streamlines (the cores), the larger the vertical 
excursion of these streamlines (i.e. the larger the amplitude of the waves). 

The foregoing is meant to be a physical account of the main features of the 
instability. Tractable mathematical formulations of the process can now be 
found. It may be said that the most accurate make least specific use of the physi- 
cal description, and that the simplest make a very literal use of it. Apart from a 
finite-difference or other numerical solution of the full equation, as in Patnaik 
et al., an example of a method with controllable accuracy is one that makes use 
only of the fact that density and vorticity layers are thin if a d 0-2 and the Rey- 
nolds number is sufficiently large. We sketch such a method. According to what 
we have seen, except inside closed-streamline regions, where the details of the 
flow have not been thoroughly examined and where the spiralling braids may 
suffer compression and therefore thickening, it is possible to reformulate the 
stability problem by assigning vorticity and density contrast to a (advecting and 
distorting) curve, rather than toafhite area. If the finest details of the flowwithin 
the cores are not needed, this leads to a substantial simplification of the numerical 
task, and moreover to the possibility of a numerical evaluation at large Rey- 
nolds numbers. Let us fit the braids with a moving curvilinear co-ordinate system 
wherein, again, s is distance along the braid, and 7 distance normal to it. We 
assert (cf. $2) that an adequate approximation to the vorticity equation in the 
thin region occupied by the braid is 

asz a a a2sz ao 
at as a7 a72 O a7 
--+-(uQ)+-(vQ) = v-+g/p -sine. 

Equation (3.1) differs from (2.10) only in that variations of SZ along the braid are 
allowed, and the velocity is not assumed proportional to s. In  particular, we 
retain the assumption that SZ = -au/aq. We integrate (3.1) with respect to q 
across the entire thickness of the braid, again making the assumption that 
vorticity and density gradients bothvanish as 171 increases to some fixed value 7". 
We call 

+II* 

- v* 
s = u+- u- = -1 ad7 

t This description retains only what we consider the essential traits of the process. 
For a discussion of additional features of the motion apparent after the wave reaches 
maximum amplitude, see $4.1. 
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FIGURE 6. Co-ordinates for braid analysis. 

the local shear across the braid, and find that S satisfies the hyperbolic equation 

(3.2) 
as - a s  aD -+U- = -rS-+g*sinO, where g = ~(U++U- ) .  
a7 as as 

It is possible to integrate (3 .2) ,  starting with a known velocity field given, say, by 
linear stability theory, and to recompute the velocity from the Biot-Savart 
Law at every time step after the shear has been advected (and generated) over a 
time step. 

The integration of (3 .2)  can be carried out along the characteristics &/at = D, 
and the co-ordinates of points of the sheet are advanced by finite-difference 
integrations of 

-- ax - U[x(t) ,  t ]  case, 2 = ~ [ x ( t ) , t ]  sine. (3.3a, b )  
at at 

A simpler scheme? and a more literal application of the physical description 
have been used. We first summarize the point of view of this model. We assign 
all the vorticity to two regions: (i) the cores centred at x = rt (g+n) A, around 
each of which the circulation is rC( t ) ;  (ii) thin braids that pass through the points 
y = 0, z = k 7 A  (n = 0, 1,2.. .), and that have a time-dependent configuration. 
A sketch of that configuration at a particular time is given in figure 6. As in the 
previous model, the vorticity and density braids being assumed very thin, their 
advection is computed by using the velocity on their centre-line. One keeps track 
of their location in space by a Lagrangian calculation of the trajectory of each 
part of the braid (in practice the determination of their abscissa suffices), One 
determines the rate of change of the shear across each point on the braid by com- 
puting local stretching and local slope (equation (3 .2) ) .  

The rate of transfer of vorticity from the braids to the cores (i.e. advective loss 
of braid vorticity) is now available and an overall budget of vorticity assigns 

t The computational difficulties of tracing out even the barotropic roll-up of a vortex 
sheet are well documented, and extensions of this approach, to allow simulation of baro- 
clinic effects in the Boussinesq approximation (Thomson & Meng 1975), show that accu- 
racy can still be obtained only at considerable cost. 
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the correct value of circulation around the core without computing the detailed 
motion and baroclinic generation within the core. 

Finally, we admittedly trade some accuracy for simplicity by postulating that, 
inasmuch as the velocity field that advects the braids is caused by vorticity a t  a 
distance, the precise configuration of this vorticity matters less than the total 
amount of circulation around it. We thus substitute for the braid-advecting 
velocity field one given by another flow with the same circulation around the 
cores a t  any time. Such a flow must, of course, (i) have the proper boundary 
conditions at  infinity, (ii) give a cat’s eye pattern with stagnation points located 
periodically in x, (iii) contain a parameter upon which depends the fraction of 
total vorticity contained within the cat’s eyes. 

For the braids, we shall make use of ( 3 . 2 )  and ( 3 . 3 ~ 4 ) .  We now consider the 
temporal transfer of vorticity between the braids and the cores. We may call 

rB = /+Lsas 
- L  

(3 .4 )  

the braid circulation. L denotes the (somewhat arbitrary) value of s at which the 
braid is imagined to end. The invariance of the total vorticity integral then re- 
quires that 

An ordinary differential equation for T B  or rc is easily found by integrating (3 .2)  
over s, from one end of the braid to the other. The result is 

rB(t)+rc(t) = r = ~ U A .  (3 .5 )  

H is the elevation of the end of the braid above its centre; v, is the braid centre- 
line velocity at its ends; and s, is the shear at the end of the braid. We shall 
solve (3 .2)  and (3 .6 )  simultaneously as an initial-value problem, the specific 
procedure being to pick a number of points along the braid a t  time t = 0, assign- 
ing to them horizontal positions x and initial shears s,. The latter are given by 
the formula 

(3.7) 

suggested by linear theory. 6 is an initial amplitude parameter; and the braid is 
taken to extend from x = -h/L to x = +A/L. In  a small time increment at, the 
X’S and 8’s are advanced by finite-difference integration of ( 3 . 3 a ) ,  and of (3 .2 )  
in the form 

ai7 _ -  - -#-+++sine. 
at as 
as 

The time increment is automatically chosen so that one of the ‘Lagrangian 
markers’ arrives a t  the end of the braid a t  the end of each time step. A modified 
Euler predictor-corrector algorithm was used, with 41 initial points along a half- 
braid length. 

One substitute velocity field that satisfies the conditions we placed on i t  
is a set of periodic solutions to the inviscid steady vorticity equation presented 
by Stuart (1967).  The stream function may be written 

U 
k @ = --In (cosh ky + A  cos kx). ( 3 . 9 )  
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k is the x-wise wavenumber; and A is a parameter ranging from 0 to 1. When 
A = 0, we have a simple horizontal shear layer, u = Utanhky. When A = 1, 
we recover the classic solution for the flow produced by a row of equal line vor- 
tices located a t  x = f inh (n = 1,2,3, . . .). For all values of A > 0, the streamline 
pattern is of the expected cat’s eye form. In  particular, the streamline that out- 
lines the cat’s eye (the stagnation streamline) is given by 

coshky+Acoskx = 1+A. 

The fraction of all vorticity contained within the cat’s eyes, and considered the 
core vorticity, is related to A by 

A = tan2 ( $ 7 ~  I?&‘). (3.10) 

The maximum vertical displacement of the stagnation streamline is 

kH = cosh-l(l+ 2A) = In [l + 2A + 2(A + A2)?z]. (3.11) 

Other properties of this streamline are discovered with seductive ease, a fact 
which may subtly have influenced our choice of this model, and the specific way 
we interpret it. 

A material surface, which initially coincides with a stream surface, does not 
remain a stream surface during the course of an unsteady flow. But the computa- 
tions of Patnaik et al. suggest that, except at the beginning of the growth, the 
braids always lie close to the stagnation streamline. So, in the model, the in- 
clination and shape of the braids, and the stretching of the fluid therein, are 
assumed given by the properties found on the stagnation streamline in Stuart’s 
solution. Thus, the advective field for the braid is the local velocity along the 
stagnation streamline 

(3.12) 

The rate of strain for the braid is 

(3.13) 
A 

as 

The local inclination of the braid is 

sine = (A; - l)tcos(ikx). (3.14) 

An a priori idea of the errors involved in using Stuart’s solution to advect 
the vorticity instead of the actual velocity field may be gained by compar- 
ing from (3.12) with the velocity along the braid according to Patnaik et al., 
on two bases: (i) equal values of rC/r (i.e. (F-FB)/I’ for computations in 
Patnaik et al. and the circulation around the cat’s eye for Stuart’s solutions), 
and (ii) equal values of H/h. (The definition of H is the same in the two types of 
computation.) This comparison (figure 7) indicates that, when rC/r is the same, 
the values of velocity along the braid, and of the strain rate y, are somewhat 
smaller in Stuart’s solution than in the numerical. It also indicates that a 
greater value of r,/r is required in Stuart’s model than in the numerical solution 
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FIGURE 7. Comparison of the advective properties of Stuart's solution with those of the 
actual field (Patnaik et al., numerical computation). A, numerical solution, H / h  = 0.21, 
r,/r = 0.67 ; 0, Stuart solution, N / h  = 0.21 ; 0, Stuart solution r,/r = 0.67. 

to achieve the same wave amplitude. Thus, we should expect use of Stuart's 
velocity field to underestimate both the growth rate and the maximum amplitude 
of the wave. 

The integration of ( 3 . 3 ~ )  and (3.8) proceeded as follows. The 41 Lagrangian 
markers are given initial x values in a quasi-arbitrary way, designed to yield an 
optimal coverage of the entire length of the braid at all times. A small initial 
value of rc/r or of H / h  is picked. Then the parameter A is evaluated, from 
(3.10) or (3.1 l), and initial values of 0, ag/as and 8 are calculated for each marker, 
from (3.1.2)-(3.14), The initial r B  and the initial Sfor each marker are calculated 
from (3.4) and (3.7), with E = 0.075 in the latter. 

After advancing x and S through a time step dt, for each marker, we recompute 
F B  from the quadrature (3.4), using ds = dxeec8 and taking the limits to be 
x = & 3A. From this rB a new value of A is found, the procedure for advancing 
the markers and their S values is repeated, and so on. The calculation stops 
automatically when the last marker reaches the end of the braid. By this time 
the asymptotic limit of A,  and hence of H / h  and rC/I', is easy to estimate byeye. 

It should be pointed out that the dynamics invoked in this procedure assign 
no essential role to viscosity, so that the nonlinear instability mechanism is 
inviscid as long as the model is applicable. It is a simple matter to couple these 
computations with the similarity solutions presented earlier, and so to obtain 
the braid structure near the stagnation point as a function of time. This is how 
figure 2 was obtained. It is only at this stage that viscosity and thermal con- 
ductivity play a role. 
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4. The predictions of the model 
The solutions provided by the model are dependent on two parameters 

A" = g"12kU2 

(or equivalently the Froude number U2/g*A), which is a measure of (i) the wave 
baroclinicity, and (ii) the assumed initial amplitude HJA.  Since the theory per- 
tains to long enough waves, the parameter a = k& does not appear. 

Sample histories of the amplitude as a function of time are given in graphical 
form in figure 8, for a comprehensive range of values of A* and an arbitrary 
initial amplitude. The limiting (homogeneous) case yields a maximum ampli- 
tude HlA II 0.280. According to the model, if the wavenumber is such that 
A* > 1.0, the wave never acquires a finite amplitude. This should be interpreted 
as follows. Even if the vorticity of the original layer is imagined concentrated in 
braids, the baroclinic generation in waves for which k < g*/2U2 exceeds, at  all 
braid slopes, the rate of vorticity advection out of the braids and into the cores. 
Thus, baroclinic generation of vorticity of opposite sign within the cores more 
than makes up for vorticity gain from the braids, and no finite growth is possible. 
Linear interfacial theory (cf. Lamb, article 232) also yields, in the Boussinesq 
limit, k = g*/2U2, for the longest infinitesimal wave that can initially grow a t  all. 
Since the assumption underlying our model (no vorticity recirculation in the 
braids) depends on energetic growth, it is certainly inconsistent to use it to com- 
pute marginal growth cases involving excessively low values of Froude numbers. 
Thus, even for long wavelengths, it is not clear why the neutral condition accord- 
ing to linear theory (interfacial or diffusive) should agree with the criterion for 
zero growth calculated above. In  fact, whenever our solutions predict slow 
growth (large values of A*), they probably overestimate both the growth rate and 
the maximum amplitude. 

17 F L M  73 
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FIGURE 9. Comparison of model and numerical solutions when there is almost no vorticity 
recirculation. r = Ut/h. a = 0.2. ( a )  J ,  = 0.03, A* = 0.177. ( b )  J ,  = 0.07, h* = 0.412. 
A ,  the model. Patnaik et al.: 0, Uh/v = 3142; 0, Uhlv = 1571; V, Uhlv = 785. 

The predictions of the model are compared with the numerical solutions of 
Patnaik et al. for two cases to which it should apply, and for two cases to which it 
should not. 

4.1. Long waves 

In  figures 9 (a) ,  ( b ) ,  the non-dimensional wavenumber a = kS = 0.2, and accord- 
ing to the Patnaik et al. computations there is no vorticity recirculation in the 
braids. One of the cases, figure 9 (a), consists of three examples chosen from Pat- 
naik et al. with essentially identical (relatively high) Froude numbers, but dif- 
ferent Reynolds numbers. The growth of wave amplitude in time is compared 
with model predictions. The other case, figure 9 (b ) ,  involves two examples of a 
lower Froude number. 

It is seen from figures 9 (a), (b)  that, whenever vorticity does not recirculate in 
the braid, the effect of viscosity on the growth of the wave is small, according to 
the Patnaik et al. numerical solutions. This is true even for surprisingly low 
values of the Reynolds number. Such a result supports the treatment of the 
braid as a sheet. The model shows growth of wave amplitude slower than that of 
the numerical solutions. As we have seen, this is an expected consequence of 
using Stuart’s velocity field to advect vorticity. The numerical solutions indicate, 
in addition, that the wave amplitude relaxes beyond the point of maximum 
amplitude. Examination of the plots of vorticity contours and of the streamlines 
for these cases show that the relaxation is due to two causes: (i) an apparent 
slight overshoot which, according to the numerical computations, is associated 
with a rotation of the core vorticity distribution; and (ii) the eventual entrain- 
ment of some core vorticity back into the braids, and its diffusion outside the 
closed-streamline regions, the instability having spent itself. We remarked earlier 
that the model is unable to describe this process. We should add that, in a real 
flow (i.e. one for which spacewise periodicity a t  fixed wavelength is not imposed), 
the growth of subharmonics, which proceeds at precisely that stage, generally 
overtakes the relaxation. The exception to this comes, in the case of stably 
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FIGURE 10. Comparison of model with numerical solutions when there is substantial 
vorticity recirculation. 7 = Ut/h. a = 0.43. A, the model. (a) Jo = 0.07, h* = 0.192. 
?7h/u, Patnaik et al.: 0, 2920; 0, 1460; 0 ,  730. ( b )  J,, = 0.03, h* = 0.082. Uh/u, Patnaik 
et al.: 0, 1460; n, 730. 

stratified flow, after the last subharmonic growth event permitted by the given 
overall shear and stratification. Thus, for times exceeding that needed to achieve 
maximum amplitude, neither our model nor the Patnaik et al. numerical simula- 
tions describe the state of affairs realistically. 

4.2. Wavelength for maximum initial growth rate 
The comparison for the case a = 0.43 is shown in figures lO(a), ( b ) .  S‘ ince some 
vorticity is here likely to recirculate in the braids for all Reynolds numbers and 
all Froude numbers according to the numerical solutions, we should expect the 
basic assumption of our model to lead to some error. Figure 10 shows that the 
model overestimates both growth rate and maximum amplitude. The error intro- 
duced by the use of Stuart’s velocity field is of course also present, and masks 
somewhat the discrepancy between model predictions and numerical solutions. 
For significantly larger values of a, the model predictions, which ignore recircula- 
tion, are worthless. This would be a serious drawback of the model were it not 
for the likelihood that waves of length shorter than that for maximum initial 
growth rate play no essential role in the nonlinear evolution of a shear layer. 
(This subject will be discussed in a subsequent paper.) On the other hand, per- 
turbation techniques may be suitable for the study of those waves that are only 
mildly unstable, and that reach only modest amplitudes. 

4.3. An analytic approximation to the nonlinear growth of a wave 

It is a result of our model computations that, for the more baroclinic waves, or 
for late times, the shear varies little along the braid. Figure 11 illustrates this 
result a t  a time corresponding to the middle of the growth period. If we consider 
S independent of x, and if in addition we introduce an approximation to Stuart’s 
solution, we can achieve a very simple analytic representation of our model. The 

17-2 
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FIGURE 11. The shear across the braid as a function of z, for a strongly baroclinic 
case. Model predictions for A* = 0.412. T :  (i) 0.78, (ii) 1.33. 

results are less accurate than those we have presented, but the basic nonlinearity 
is displayed in a readily understandable form. 

We retain (3.5), but neglect dL/dt  as < UE: 
drc/dt = ~ U E S E  - 2g*H. (4.1) 

According to (3.9)-(3.11), 7cH and uE/U are monotonic functions of rC/r that 
can, with a maximum error of 11 %, be approximated by 

uE/U 21 kH 1~ &rG where G = rC/r. (4.2) 
If we now use the assumption that X is independent of x, and take the braid 

length to be simply 2L = A, we get 

s, = rBp = (r-rc)/A. 

--- 4rm arc g*A A & _-- dt -mMr-rc)--rc. 
2r 

We can combine (4.1)-(4.3), to obtain 
(4.3) 

(4.4) 

The rate of growth of the wave amplitude is the difference between two terms: an 
advective term, the flux of vorticity into the cat's eye boundary, which is pro- 
portional to braid shear (i.e. N I' - F,) as well as to advective velocity (i.e. N re); 
and a baroclinic production term, proportional to braid slope (i.e. N rc). 

Non-dimensionally, (4.4) can be written 

(4.5) dG/dt = 01 G - w2 Q2, 

where w1 = +Uk(l  -g*/2kU2),  w2 = QUk. The solution is 

- H = t G  = tc exp ( 0 1  $1 
1 + C(02/w1) exp (w,t)' A 
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Model predictions. 

C is an arbitrary constant, related to the initial amplitude H ,  by 

C =  4H01h 
1 - 4H,/h' 

5. Comparison of waves growing independently in a given initial layer 
It is of interest to compare the separate evolution of waves of different lengths 

on a non-dimensional basis, which involves only layer parameters. The amplitude 
parameter is then g*H/U2, and the non-dimensional time g*t/U. This is shown in 
figure 12. We see that, while thelshortest waves grow fastest, they achieve only 
modest maximum amplitudes, and that, since the longest waves do not grow a t  
all, there is a preferred wavelength for waves that grow relatively slowly but 
achieve the largest amplitude. The model computations yield 

A* = g*/2kU2 = 0.5, g*H/U2 = 0.727 and H / h  = 0.116 

for these largest waves for which G 0.5. The maximum amplitude is reached at 
a time g*t/U, which depends on initial amplitude, but which is roughly 10. 
Figure 13 shows the maximum amplitude against A*. 

6. Interactions 
One should bear in mind that the physicaI process described by the model 

rules out the possibility of waves of different wavelengths achieving their com- 
puted amplitude side by side. Vorticity lumping excludes vorticity sharing; 
and the fixed amount of vorticity available ( 2  U/unit length) must be exclusively 
claimed by one wavelength, if the wave is to reach its maximum possible height. 
Thus, in order to describe the evolution of a layer initially disturbed in a non- 
selective manner, it  is necessary to consider the interaction of waves of different 
wavelengths, which compete for the same supply of vorticity. 
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Kelly (1967) studied the initial phase of a central aspect of this interaction, 
in an important and perceptive analysis of subharmonic growth. The same type 
of interaction will be examined as a nonlinear phenomenon in a subsequent 
article. Since the results of that work are required to describe the evolution of a 
simple shear layer in the laboratory or in natural flows, a comparison of pre- 
dictions derived from our model and observations will be delayed until then. 
The relevance of Maslowe's ( 1972) stationary nonlinear diffusive wave solutions 
to the natural evolution of shear layers will also be discussed a t  that time. 

7. Permanent mixing effects during the roll-up process 
The important question of how much roll-up enhances permanent mixing 

can be answered partially by our model, if we confine our attention, as before, 
to the limited period ending when the wave reaches maximum amplitude. But 
the occurrence of secondary instabilities bears on the answer, ao that gravita- 
tionally stable and gravitationally neutral mixing layers may behave quite 
differently in this regard, even during this initial period. 

Let us assume first that there is no secondary instability. The constant density 
plots found in Patnaik et al., and the numerical simulations of the roll-up of a 
vortex sheet modelled by a collection of discrete vortices, suggest strongly that it 
is primarily along the braids that positive strain occurs. The wound-up layer in 
the core, on the whole, suffers negative strain or compression. While most of the 
molecular mixing must eventually take place in the cores, i t  seems certain that 
the necessary development of small scales within that region requires a longer 
time than that available for roll-up. For instance, Brown & Roskho (1971), in 
their investigation of a turbulent free shear layer between gases of different 
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densities, found that “the variation in density a t  any point is of the same order 
as the density difference between the streams”. This suggests that molecular 
mixing badly lags behind ‘entrainment ’ (i.e. the circumscribing of fluid from 
both sides of the layer by closed streamlines). Thus, it seems reasonable to expect 
the mixing in a roll-up time to take place primarily in the braids. 

Using our boundary-layer analysis of the braid again, we can estimate the 
totaI voIume of fluid entrained into the mixing region 17 I < 6: 

volume mixed M 2h loT E- u8) at. 

From our braid model, we have 

-- da - -?a+- TP and u8 = -?a. 
at 26 

y is the strain rate along the braid, and T = O(h /U)  is the roll-up time. Thus, 

T at 
volumemixed M .@lo - 

Our model computations show that a(t) reaches the asymptotic value 

W) = wW?(T)l% 

which makes a convenient scale factor for the integral above. Finally, if we 
imagine that the volume of mixed fluid subsequently collapses back into a hori- 
zontal layer, the layer has a thickness 

Amix [2~y*(T)]bSOr(~)8(T) - -  -dr, where y* = hy/U,  r = tU/h. 
h RePr W) 

The dimensionless integral varies from about 0.4 to 1.2, within the range of 
examples examined. These include typical values of the parameters a and A*. 
In  most cases, the increase in mixed layer thickness during roll-up is small com- 
pared with billow height. The ratio is N 4 for Re, = 1000, and decreases to 

In  summary, it seems that, in the absence of secondary instability, roll-up 
is only a prelude to permanent mixing. On the other hand, in the stratified case, 
if the Reynolds number is high, (if a secondary instability should be expected; 
(ii) the roll-up time for the secondary billows (with wave lengths likely to be 
small) is short, so that it is quite possible not only for these billows to entrain 
additional fluid, but also for the subharmonic growth of the small billows to 
contribute further to the mixing in the region of the braid while the primary 
wave is still growing. The qualitative effect of these phenomena, according to 
our model, is thus to enhance the mixing by the braid, as though the Reynolds 
number were lower. 

for Re, = 500000. 
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